578 research outputs found

    Optical Classification of Gamma-Ray Bursts in the Swift Era

    Full text link
    We propose a new method for the classification of optically dark gamma-ray bursts (GRBs), based on the X-ray and optical-to-X-ray spectral indices of GRB afterglows, and utilizing the spectral capabilities of Swift. This method depends less on model assumptions than previous methods, and can be used as a quick diagnostic tool to identify optically sub-luminous bursts. With this method we can also find GRBs that are extremely bright at optical wavelengths. We show that the previously suggested correlation between the optical darkness and the X-ray/gamma-ray brightness is merely an observational selection effect.Comment: 6 pages, 3 figures; accepted for publication in Ap

    Capacity estimation and verification of quantum channels with arbitrarily correlated errors

    Full text link
    © 2017 The Author(s). The central figure of merit for quantum memories and quantum communication devices is their capacity to store and transmit quantum information. Here, we present a protocol that estimates a lower bound on a channel's quantum capacity, even when there are arbitrarily correlated errors. One application of these protocols is to test the performance of quantum repeaters for transmitting quantum information. Our protocol is easy to implement and comes in two versions. The first estimates the one-shot quantum capacity by preparing and measuring in two different bases, where all involved qubits are used as test qubits. The second verifies on-the-fly that a channel's one-shot quantum capacity exceeds a minimal tolerated value while storing or communicating data. We discuss the performance using simple examples, such as the dephasing channel for which our method is asymptotically optimal. Finally, we apply our method to a superconducting qubit in experiment

    GRB 030329: 3 years of radio afterglow monitoring

    Full text link
    Radio observations of gamma-ray burst (GRB) afterglows are essential for our understanding of the physics of relativistic blast waves, as they enable us to follow the evolution of GRB explosions much longer than the afterglows in any other wave band. We have performed a three-year monitoring campaign of GRB 030329 with the Westerbork Synthesis Radio Telescopes (WSRT) and the Giant Metrewave Radio Telescope (GMRT). Our observations, combined with observations at other wavelengths, have allowed us to determine the GRB blast wave physical parameters, such as the total burst energy and the ambient medium density, as well as investigate the jet nature of the relativistic outflow. Further, by modeling the late-time radio light curve of GRB 030329, we predict that the Low-Frequency Array (LOFAR, 30-240 MHz) will be able to observe afterglows of similar GRBs, and constrain the physics of the blast wave during its non-relativistic phase.Comment: 5 pages, 2 figures, Phil. Trans. R. Soc. A, vol.365, p.1241, proceedings of the Royal Society Scientific Discussion Meeting, London, September 200

    The host galaxy of GRB010222: The strongest damped Lyman-alpha system known

    Get PDF
    Analysis of the absorption lines in the afterglow spectrum of the gamma-ray burst GRB010222 indicates that its host galaxy (at a redshift of z=1.476) is the strongest damped Lyman-alpha (DLA) system known, having a very low metallicity and modest dust content. This conclusion is based on the detection of the red wing of Lyman-alpha plus a comparison of the equivalent widths of ultraviolet Mg I, Mg II, and Fe II lines with those in other DLAs. The column density of H I, deduced from a fit to the wing of Lyman-alpha, is (5 +/- 2) 10^22 cm^-2. The ratio of the column densities of Zn and Cr lines suggests that the dust content in our line of sight through the galaxy is low. This could be due to either dust destruction by the ultraviolet emission of the afterglow or to an initial dust composition different to that of the diffuse interstellar material, or a combination of both.Comment: Submitted to MNRAS 12 page

    SCUBA observations of the host galaxies of four dark gamma-ray bursts

    Get PDF
    We present the results of a search for submillimetre-luminous host galaxies of optically dark gamma-ray bursts (GRBs) using the Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT). We made photometry measurements of the 850-micron flux at the location of four `dark bursts', which are those with no detected optical afterglow despite rapid deep searches, and which may therefore be within galaxies containing substantial amounts of dust. We were unable to detect any individual source significantly. Our results are consistent with predictions for the host galaxy population as a whole, rather than for a subset of dusty hosts. This indicates that optically dark GRBs are not especially associated with very submillimetre-luminous galaxies and so cannot be used as reliable indicators of dust-enshrouded massive star-formation activity. Further observations are required to establish the relationship between the wider GRB host galaxy population and SCUBA galaxies.Comment: 6 pages. Accepted for publication in MNRA

    Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements

    Full text link
    Protecting quantum information from errors is essential for large-scale quantum computation. Quantum error correction (QEC) encodes information in entangled states of many qubits, and performs parity measurements to identify errors without destroying the encoded information. However, traditional QEC cannot handle leakage from the qubit computational space. Leakage affects leading experimental platforms, based on trapped ions and superconducting circuits, which use effective qubits within many-level physical systems. We investigate how two-transmon entangled states evolve under repeated parity measurements, and demonstrate the use of hidden Markov models to detect leakage using only the record of parity measurement outcomes required for QEC. We show the stabilization of Bell states over up to 26 parity measurements by mitigating leakage using postselection, and correcting qubit errors using Pauli-frame transformations. Our leakage identification method is computationally efficient and thus compatible with real-time leakage tracking and correction in larger quantum processors.Comment: 22 pages, 15 figure
    corecore